Contents

TS System
Selected literature of published Journals

- Clinical Study
 Immediate Implant Placement and Immediate Loading with Osstem TSIII Implant System and Chair-side Provisional Restoration in Mandibular Anterior Partial Edentulism
 Scientific Poster, Osstem World Meeting 2011
 Immediate placement of dental implant - TSIII SA Implant clinical result
 Scientific Poster, Osstem World Meeting 2011
 Immediate Loading of TSIII HA, TSIII SA Implant system
 Scientific Poster, Osstem World Meeting 2011
 Subjective Satisfaction of Clinician and Short-term Clinical Evaluation of Osstem TSIII SA Implant
 J Korean Clinical Implant 2010;30(7):430-43

- Pre-Clinical Study
 Enhancement of in Vitro Osteogenesis on Sandblasted and Acid Etched Surfaces with Rough Micro-topography
 Scientific Poster, Osstem World Meeting 2011
 The Effects of Surface Roughness on the Sandblasted with Large Grit Alumina and Acid Etched Surface Treatment: In Vitro Evaluation
 Scientific Poster, Osstem World Meeting 2011
 The Effects of Surface Roughness on the Sandblasted with Large Grit Alumina and Acid Etched Surface Treatment: In Vivo Evaluation
 Scientific Poster, Osstem World Meeting 2011
 Biomechanical and Histomorphometrical Evaluation of Bone-Implant Integration at Sand Blasting with Alumina and Acid Etching (SA) Surface
 Scientific Poster, 19th Annual Scientific Congress of EAO 2010
 Experimental Study of Bone Response to Hydroxyapatite Coating Implants: BIC and Removal Torque Test
 Surface Property Evaluation According to the High Crystallinity of the TSIII HA Implant
 Scientific Poster, Osstem World Meeting 2011
 Architectural Feature of TSIII HA Implant
 Scientific Poster, Osstem World Meeting 2011

- References

GS System
Selected literature of published Journals

- **Clinical Study**
 - Comparison of Clinical Outcomes of Sinus Bone Graft with Simultaneous Implant Placement: 4-month and 6-month Final Prosthetic Loading
 - Prospective Study of Tapered RBM Surface Implant Stability in the Maxillary Posterior Area
 - A 1-year Prospective Clinical Study of Soft Tissue Conditions and Marginal Bone Changes around Dental Implants after Flapless Implant Surgery
 - A Relaxed Implant Bed: Implants Placed After Two Weeks of Osteotomy with Immediate Loading: A One Year Clinical Trial
 - Accepted in 2010 J Oral Implantol.
 - Short-term, Multi-center Prospective Clinical Study of Short Implants Measuring Less than 7 mm
 - J Kor Dent Sci 2010;31(1):11-6
 - Evaluation of Sinus Bone Resorption and Marginal Bone Loss after Sinus Bone Grafting and Implant Placement
 - Evaluation of Peri-implant Tissue Response according to the Presence of Keratinized Mucosa

- **Pre-Clinical Study**
 - Morphogenesis of the Peri-implant Mucosa: A Comparison between Flap and Flapless Procedures in the Canine Mandible
 - Influence of Premature Exposure of Implants on Early Crestal Bone Loss: An Experimental Study in Dogs
 - Fatigue Characteristics of Five Types of Implant-Abutment Joint Designs
 - The Effect of Various Thread Designs on the Initial Stability of Tapered Implants
 - Effect of Casting Procedure on Screw Loosening of UCLA Abutment in Two Implant-Abutment Connection Systems
 - J Kor Acad Prosthodont 2008;46(3):246-64
 - Influence of Tightening Torque on Implant-Abutment Screw Joint Stability
 - J Kor Acad Prosthodont 2008;46(4):396-408

- **References**

SS System
Selected literature of published Journals

- **Clinical Study**
 - A Comparison of Implant Stability Quotients Measured Using Magnetic Resonance Frequency Analysis from Two Directions: Prospective Clinical Study during the Initial Healing Period
 - Non-submerged type Implant Stability Analysis during Initial Healing Period by Resonance Frequency Analysis
 - Evaluation of Peri-implant Tissue in Nonsubmerged Dental Implants: a Multicenter Retrospective Study
 - A Randomized Clinical One-year Trial Comparing Two Types of Non-submerged Dental Implant
 - Accepted in 2009 for Publication in Clin Oral Impl Res
 - Four-year Survival Rate of RBM Surface Internal Connection Non-Submerged Implants and the Change of the Peri-Implant Crestal Bone

- **Pre-Clinical Study**
 - Influence of Abutment Connections and Plaque Control on the Initial Healing of Prematurely Exposed Implants: An Experimental Study in Dogs
 - J Periodontol 2008;79(6):1070-4
 - Peri-implant Bone Reactions at Delayed and Immediately Loaded Implants: An Experimental Study
 - Flapless Implant Surgery: An Experimental Study
 - The Effect of Internal Implant-Abutment Connection and Diameter on Screw Loosening
 - J Kor Acad Prosthodont 2005;43(3):379-92

- **References**

Contents

GS System
Selected literature of published Journals

- **Clinical Study**
 - Comparison of Clinical Outcomes of Sinus Bone Graft with Simultaneous Implant Placement: 4-month and 6-month Final Prosthetic Loading
 - Prospective Study of Tapered RBM Surface Implant Stability in the Maxillary Posterior Area
 - A 1-year Prospective Clinical Study of Soft Tissue Conditions and Marginal Bone Changes around Dental Implants after Flapless Implant Surgery
 - A Relaxed Implant Bed: Implants Placed After Two Weeks of Osteotomy with Immediate Loading: A One Year Clinical Trial
 - Accepted in 2010 J Oral Implantol.
 - Short-term, Multi-center Prospective Clinical Study of Short Implants Measuring Less than 7 mm
 - J Kor Dent Sci 2010;31(1):11-6
 - Evaluation of Sinus Bone Resorption and Marginal Bone Loss after Sinus Bone Grafting and Implant Placement
 - Evaluation of Peri-implant Tissue Response according to the Presence of Keratinized Mucosa

- **Pre-Clinical Study**
 - Morphogenesis of the Peri-implant Mucosa: A Comparison between Flap and Flapless Procedures in the Canine Mandible
 - Influence of Premature Exposure of Implants on Early Crestal Bone Loss: An Experimental Study in Dogs
 - Fatigue Characteristics of Five Types of Implant-Abutment Joint Designs
 - The Effect of Various Thread Designs on the Initial Stability of Tapered Implants
 - Effect of Casting Procedure on Screw Loosening of UCLA Abutment in Two Implant-Abutment Connection Systems
 - J Kor Acad Prosthodont 2008;46(3):246-64
 - Influence of Tightening Torque on Implant-Abutment Screw Joint Stability
 - J Kor Acad Prosthodont 2008;46(4):396-408

- **References**

SS System
Selected literature of published Journals

- **Clinical Study**
 - A Comparison of Implant Stability Quotients Measured Using Magnetic Resonance Frequency Analysis from Two Directions: Prospective Clinical Study during the Initial Healing Period
 - Non-submerged type Implant Stability Analysis during Initial Healing Period by Resonance Frequency Analysis
 - Evaluation of Peri-implant Tissue in Nonsubmerged Dental Implants: a Multicenter Retrospective Study
 - A Randomized Clinical One-year Trial Comparing Two Types of Non-submerged Dental Implant
 - Accepted in 2009 for Publication in Clin Oral Impl Res
 - Four-year Survival Rate of RBM Surface Internal Connection Non-Submerged Implants and the Change of the Peri-Implant Crestal Bone

- **Pre-Clinical Study**
 - Influence of Abutment Connections and Plaque Control on the Initial Healing of Prematurely Exposed Implants: An Experimental Study in Dogs
 - J Periodontol 2008;79(6):1070-4
 - Peri-implant Bone Reactions at Delayed and Immediately Loaded Implants: An Experimental Study
 - Flapless Implant Surgery: An Experimental Study
 - The Effect of Internal Implant-Abutment Connection and Diameter on Screw Loosening
 - J Kor Acad Prosthodont 2005;43(3):379-92

- **References**

Contents
US System
Selected literature of published Journals

- **Clinical Study**
 - Success Rate and Marginal Bone Loss of Osstem USII plus Implants; Short term Clinical Study
 - The Study of Bone Density Assessment on Dental Implant Sites
 - A Retrospective Evaluation of Implant Installation with Maxillary Sinus Augmentation by Lateral Window Technique
 - Multicenter Retrospective Clinical Study of Osstem US II Implant System in Type IV Bone
 - J. Korean Implantology(KAOMI) 2007;11(3):22-29
 - Multicenter Retrospective Clinical Study of Osstem US II Implant System in Complete Edentulous Patients
 - J. Korean Implantology(KAOMI) 2007;11(3):12-21
 - Retrospective Multicenter Cohort Study of the Clinical Performance of 2-stage Implants in South Korean Populations

- **Pre-Clinical Study**
 - Effects of Different Depths of Gap on Healing of Surgically Created Coronal Defects around Implants in Dogs: A Pilot Study
 - The Effect of Surface Treatment of the Cervical Area of Implant on Bone Regeneration in Mini-pig
 - Heat Transfer to the Implant-Bone Interface during Preparation of Zirconia/Alumina Complex Abutment
 - Fatigue Fracture of Different Dental Implant System under Cyclic Loading
 - J. Kor. Acad Prosthodont 2009;47:424-34

- **References**

MS System
Selected literature of published Journals

- **Clinical Study**
 - Multicentric Retrospective Clinical Study on the Clinical Application of Mini Implant System
 - Clinical Research of Immediate Restoration Implant with Mini-implants in Edentulous Space
 - Hua Xi Kou Qiang Yi Xue Za Zhi. 2010 Aug;28(4):412-6

- **References**

- **References**
Immediate Implant Placement and Immediate Loading with Osstem TSIII Implant System and Chair-side Provisional Restoration in Mandibular Anterior Partial Edentulism

Choon-Mo Yang
Scientific Poster, Osstem World Meeting 2011

Background:
According to sufficient clinical and scientific studies, immediate implant placement and immediate loading offers a predictable immediate solution to teeth loss. The mandibular anterior region is suitable to get primary stability of inserted implants because of its high quality of alveolar bone. In this clinical case report, after extraction of mandibular anterior teeth, implants are placed immediately and loaded immediately with chair-side provisionalization.

Study design (Case Report):
Osstem TSIII Implant, Bone Graft (SureOss™ chip, FDBA), Omni-Vac Shell, Temporary Abutment, Bis-Acryl Provisional Resin, Transfer Abutment.

Conclusion:
Immediate provisional restoration placed on immediate implants in extraction sockets offers predictable advantages to both patients and practitioners. The primary stability was obtained with Osstem Implant system which has sandblasted and acid-etched rough surface and tapered body design. With help of prosthetic components such as convertible abutments, temporary cylinder and Bis-Acryl provisional resin material, the chair-side provisional restoration accomplished prompt esthetic and functional need and stable bone response around implants.

Immediate Implant Placement and Immediate Loading with Osstem TSIII Implant System and Chair-side Provisional Restoration

Hyun-Ki Cho
Scientific Poster, Osstem World Meeting 2011

Background:
It has been suggested previously that immediate implant placement in fresh extraction sockets would be advantageous to preserve alveolar ridge dimensions by reducing post-extraction alveolar ridge resorption, and thus supporting an aesthetic implant restoration. Recent studies referring to the survival rate of implants placed immediately in fresh post-extraction sockets showed similar results to implants placed in healed bone.

For successful immediate implant placement, dentist has to know the clear concepts. Therefore, the aim of the present study was to evaluate the effect of the timing of loading on bone healing following immediate placement of Osstem TSIII SA implants into fresh extraction sockets.

Study design (Case Report):
Sex : f, Age : 50yr
C.C : root rests and mobile teeth
Treatment protocol :
#15, 13, 12, 11, 21, 22, 23, 34 Tooth extraction
#36, 45, 46, 11, 12, 13, 16, 21, 22, 23, 25 implant placement
Temporary 2 implant #16-25, #36-46 crown and bridge

Conclusions:
The present study has shown that the osseointegration of implants placed immediately into fresh extraction sockets can be achieved irrespective of the timing of loading. Taking these results together, it is considered that the Osstem TSIII SA implant may lead to prompt bone conduction in the early stage and excellent bone response. Therefore, immediate dental implant placement is reliable treatment and offer benefits to dentists and patients.

Immediate placement of dental implant - TSIII SA implant clinical result

Hyun-Ki Cho
Scientific Poster, Osstem World Meeting 2011

Background:
It has been suggested previously that immediate implant placement in fresh extraction sockets would be advantageous to preserve alveolar ridge dimensions by reducing post-extraction alveolar ridge resorption, and thus supporting an aesthetic implant restoration. Recent studies referring to the survival rate of implants placed immediately in fresh post-extraction sockets showed similar results to implants placed in healed bone.

For successful immediate implant placement, dentist has to know the clear concepts. Therefore, the aim of the present study was to evaluate the effect of the timing of loading on bone healing following immediate placement of Osstem TSIII SA implants into fresh extraction sockets.

Study design (Case Report):
Sex : f, Age : 50yr
C.C : root rests and mobile teeth
Treatment protocol :
#15, 13, 12, 11, 21, 22, 23, 34 Tooth extraction
#36, 45, 46, 11, 12, 13, 16, 21, 22, 23, 25 implant placement
Temporary 2 implant #16-25, #36-46 crown and bridge

Conclusions:
The present study has shown that the osseointegration of implants placed immediately into fresh extraction sockets can be achieved irrespective of the timing of loading. Taking these results together, it is considered that the Osstem TSIII SA implant may lead to prompt bone conduction in the early stage and excellent bone response. Therefore, immediate dental implant placement is reliable treatment and offer benefits to dentists and patients.
Immediate Loading of TSIII HA, TSIII SA Implant system

Dr. Young-Hak Oh
Scientist Poster, Osstem World Meeting 2011

Background:
Restoring the region of missing teeth using implants has become a generalized dental technique. To ensure strong osseointegration between bone and implants, a long healing period is needed for the formation of new bone. Note, however, that restoring the masticatory function fast so as a result of improving primary physical stability seems possible through the improvement of implant form and secondary biological stability.

Study design (Case Report):
At the EAO Consensus held in 2006, immediate loading was defined as a technique of connecting the upper structure that occludes within 72 hours of placing implants. Nowadays, the period tends to extend to up to 1 week. Initial stability is important above all for successful immediate loading, and implants should be placed well and in appropriate position and direction to form stabilized prostheses immediately. Initial stability is determined by the bone mass, bone quality, implant forms, and surgical ability of the surgeon. Performing drilling reduced by one stage and slightly short final drilling are recommended, including using implants capable of self-tapping, tapered form, and implants with large diameters to increase the contact levels of bone and implant and improving primary physical stability. To increase secondary biological stability, rough surface where bone response is quick is recommended. The appropriate types seem to be the SA surface (Osstem Implant) accompanied by blasting and acid etching or the HA surface (Osstem Implant) coated with hydroxyapatite.

Placing a sufficient number of implants in an appropriate position, reducing the size of the occlusal surface of the initial temporary prostheses and forming a small cup angle so that lateral pressure is applied minimally, and dispersing occlusal pressure by rigidly splitting all implants if possible seem to be important. As long as the residual teeth around the edentulous jaw are healthy, and if the antagonist tooth is a denture that does not deliver occlusal pressure considerably, the success rate will be higher, and indications can be expanded if auxiliary implants are placed strategically. The TSIII SA & TSIII HA released by Osstem implant allow immediate loading to be easier than before with an expanded range of application by improving primary physical stability and secondary biological stability through surface enhancement. Although this assessment is based on short-term, there have been many cases wherein the clinical results were good. Thus, some of them are introduced herein.

Subjective Satisfaction of Clinician and Short-term Clinical Evaluation of Osstem TSIII SA Implant

Young-Kyun Kim, Ji-Hyun Bae
J Korean Clinical Implant 2010;30(7):430-43

Background:
Recently Osstem Inc. released a new product line, TSIII SA, which is processed by sand blasting using alumina and acid-etching. This new implant features a tapered design, with an open thread equipped on top to minimize necrosis of the alveolar bone, while its helix cutting edge allows self-tapping and easy adjustment of the installation direction. The apex is designed to improve probing ability into the bone tissue, and fixing ability on the bottom. The manufacturer explains the benefits of the TSIII SA as follows:

- The compliance evaluation revealed that most of the clinicians do not follow the procedure as specified by the manufacturers.
- Notably, a relatively high percentage of clinicians did not use a cortical drill during normal bone implantation due to the change in the design of the TSIII system to a single thread type. However, the use of a cortical drill is recommended because torque installation can deviate from the proper range in many cases. When a tapered implant is installed without using countersinking or cortical drilling in a cortical bone, the chances of excess torque occurring are higher, which can result in alveolar bone absorption during the healing process.
- It is notable that 50% of the clinicians answered that there is no difference between the TSIII SA and previously preferred products in terms of self-tapping ability and initial fixation.

Conclusions:
1. A total of 522 implants were installed, 99.6% (n=520/522) of which were successful. Most of the clinicians evaluated that the TSIII SA implants exhibited excellent bone response.
2. About 50% of the clinicians answered that there was no significant difference between the TSIII SA and previously preferred products in terms of self-tapping ability and initial fixation.
3. The average treatment period was 3.9 months for the maxilla, and 3.4 months for the mandible, which suggests that the TSIII SA implant can shorten the treatment period.
4. Overall satisfaction with the TSIII SA was rather high, but approximately 50% of the clinicians answered that there was no difference in terms of the satisfaction they felt with the TSIII SA compared to previously preferred products.
Enhancement of In Vitro Osteogenesis on Sandblasted and Acid Etched Surfaces with Rough Micro-topography

Hong-Young Choi, Su-Kyung Kim, Jae-Jun Park, Tae-Gwan Eom
Scientific Poster, Osstem World Meeting 2011

Objective:
The objective of this study was to evaluate the effect of surface roughness and morphology on various physiochemical parameters that are involved with in vitro osteogenesis.

Study design:
To study interactions of osteoblast on different topography surfaces of titanium material through in vitro systems and three kinds of surfaces such as sandblasting with hydroxyapatite powder, anodic oxidation and SA surface (sandblasted with large grit alumina in sizes of 250-500 μm and acid-etched with HCl/H₂SO₄) were investigated. Using MG-63 cells, we examined the relationship between surface micro-topography and osteogenic activity such as adhesion, proliferation, and ALP activity.

Results:
Using MG-63 cells, we examined the osteogenic activity according to the surface parameters. ALP activity was higher in SA surface despite low cell adhesion. ELISA showed the SA surface enhanced secretion of osteocalcin, osteopontin, TGF-β1, and PGE₂ which was known to stimulate the osteogenesis and bone healing process. In semi-quantitative RT-PCR, they exhibited a relatively high expression of osteoblastic differentiation markers.

Conclusions:
These results demonstrate that SA surfaces with HCl/H₂SO₄ accelerate the in vitro osteogenic potential in MG-63 cells. Therefore SA surfaces may play roles in stimulating the bone formation and ultimately may enhance bone-implant contact.

Fig. 1. Surface morphology on various surface treatments.

Fig. 2. Growth rate on various surface treatments.

Fig. 3. ALP activity on various surface treatments.

Fig. 4. Mineralization.

Fig. 5. Osteogenesis-related protein.

Fig. 6. The osteogenesis-related gene expression.

The Effects of Surface Roughness on the Sandblasted with Large Grit Alumina and Acid Etched Surface Treatment: In Vitro Evaluation

Hong-Young Choi, Jae-June Park, Su-Kyung Kim, Tae-Gwan Eom
Scientific Poster, Osstem World Meeting 2011

Objective:
The aim of the present study was to evaluate the effect of roughness on the sandblasted with large grit alumina and acid etched surface, which is involved with in vitro osteogenesis.

Study design:
To study the interactions of osteoblast on different surface roughness and micro-topography in vitro systems, four kinds of surfaces with different morphology (RBM with Ra 1.5μm and SA with Ra 0.9μm, 1.5μm, 2.8μm individually) were investigated. Four kinds of disks were made by properly changing the blasting and acid-etching process such as the blasting intensity, media size, blowing pressure, and acid-etching time. Using MG-63 cells, we examined the relationship between the roughness of SA surfaces and osteogenic activity such as ALP activity, ELISA (enzyme-linked immunosorbent assay) and mineralization.

Results:
MG-63 osteoblast like cells were sensitive to submicron-scale features, which were dependant on blasting intensity and acid etching conditions. The uniformity and density of submicron-scale micropits were enhanced as the SA surface roughness increased. Also, the cell responses such as the ALP activity, mineralization, and osteogenesis related protein were enhanced as the surface roughness and the density of the micro-pit increased.

Conclusions:
Studying the macro and micro-topography of SA surfaces were important variables in determining. The osteoblast response. The ALP activity, mineralization and osteogenesis related protein were enhanced as the roughness and the density of the micro-pit of the SA surface increased.

Fig. 1. Surface topography on various treatments.

Fig. 2. ALP Activity.

Fig. 3. ELISA _ hOsteocalcin.

Fig. 4. Mineralization.
Objective:
The aim of the present study was to evaluate the effect of roughness on the sandblasted with large grit alumina and acid etched surface, which were involved with the in vivo removal torque test.

Study design:
Three kinds of implants with different surface topographies were made by properly changing the blasting and acid-etching processes. This involved changing things like the blasting material, media size, blowing pressure, and acid-etching time. In ten micro-pigs, three submerged implants were placed in the tibia. Groups were divided into three groups: RBM (Ra 1.5 μm), Small SA (Ra 1.5 μm) and SA (Ra 2.8 μm). The micro-pigs were sacrificed following 2 and 4 weeks healing period. After 2 and 4 weeks of healing, the micro-pigs were sacrificed and all implants were evaluated by removal torque testing.

Results:
There were no statistically significant differences between the groups. The RBM surface and SA with small roughness (Ra 1.5 μm) had relatively similar removal torque values at both 2 weeks and 4 weeks, but the SA surface with higher roughness (Ra 2.8 μm) showed a higher removal torque value than small Ra SA in 4 weeks (p < .05).

Conclusions:
The contribution of macro and micro topography to the anchorage of SA implants was determined. For the SA surface treatment, macro-topography with high surface roughness is more effective in a removal torque test than micro-topography in the acid etching process. The SA implant presented a higher removal torque than the RBM surface.

Objective:
The implant surface feature and roughness have been proposed as a potential factor affecting bone integration and marginal bone loss. The aim of the present study was to evaluate the difference between SA and RBM surface for osseointegration and marginal bone loss in the mandible of beagle dogs.

Study design:
All mandibular premolars and first molars were extracted bilaterally in 10 beagles. After 8 weeks of extraction, 12 implants were processed for histomorphometric analysis. For statistical analysis, t-tests were performed (p < .05).

Results:
There were no statistically significant differences in relation to histomorphometric evaluations between RBM and SA surfaces. Marginal bone loss was 0.83 ± 0.51 mm (RBM surface) and 0.96 ± 0.43 mm (SA surface). No differences could be observed between the two surfaces of implants. After a 12 weeks healing period, BIC and BA of SA surface were similar to the RBM surface. There were no significant differences in the BIC and BA between the two groups (p > .05). The mean removal torque value was higher for a SA surface (127.2 ± 37.0 Ncm) than for a RBM surface (61.9 ± 34.5 Ncm). The differences between RBM and SA surfaces were significant (p < .001).

Conclusions:
It can be concluded that the SA surface was more effective than RBM surface in enhancing the biomechanical interlocking between the new bone and implant.
Objective:
The objective of this study was to evaluate the early osseointegration of hydroxyapatite (HA) coated implant versus resorbable blast media (RBM) and sand-blasted with alumina and acid etched (SA) surface tapered implants.

Study design:
Twelve adult male miniature pigs (Medi Kinetics Micropigs, Medi Kinetics Co., Ltd., Korea) were used in this study. The removal torque of implants placed in the tibia of miniature pigs was measured. For implants placed in the mandible, histomorphometric evaluation was performed for the evaluation of the bone-implant contact (BIC) ratio.

Results:
After 4, 8, and 12 weeks, removal torque values were increased. Among the 3 groups, the HA coated group showed the highest value (p < .05). When the HA surface, RBM, and SA surface group were compared at each time point, the HA group showed statistically significantly high removal torque value (RTV) values (p < .05). At 2 weeks, in comparison with RBM, SA showed an 11 % increase, and HA showed a 42 % increase; nonetheless, they were not statistically significant. At 4 weeks, the BIC ratio of HA was significantly higher than that of SA (p < .05). Nonetheless, RBM and SA were not significantly different (p > .05).

Conclusions:
The early osseointegration of HA coated implants was found to be excellent, and HA coated implants will be available in poor quality bone.

Objective:
To evaluate the characteristics of the HA (Hydroxyapatite) surface due to the high crystal growth of the TSIII HA implant.

Study design:
The TSIII HA implant (∅ 4.0 x 10 mm) by Osstem and TSV HA implant (∅ 4.1 x 10 mm) by Zimmer were used to evaluate solubility. For the solution, 1M Tris buffer with pH 7.4 was used and solubility was evaluated. For the measurement of the eluted calcium, Arsenazo III and Malachite Green were used to produce the color reaction with calcium. Absorbance was measured with Beckman Coulter Spectrophotometer to quantify the reaction.

Results:
Based on the result of the evaluation of HA solubility with calcium ion in relation to HA crystallinity, after 4 days in the solution, the high crystalline TSIII HA implant showed similar solubility results compared to the TSV HA implant. The elution of calcium ion gradually decreased with accordance with the increase of HA crystallinity over the number of days and tests.

Conclusions:
The highly crystallized TSIII HA implant has a stable surface coating layer and exhibits safe dissolution characteristics. Thus, it is evaluated as an excellent product that secures long-term safety.

Table 1. Crystallinity of conventional and TSIII HA

<table>
<thead>
<tr>
<th>Crystal plane</th>
<th>Conventional HA (b)</th>
<th>TSIII HA (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(002)</td>
<td>0.1490</td>
<td>0.1340</td>
</tr>
<tr>
<td>(211)</td>
<td>0.1515</td>
<td>0.1345</td>
</tr>
</tbody>
</table>

Fig. 1. Removal torque value graph.

Fig. 2. BIC ratio.

Fig. 3. The calcium ion dissolution characteristic of the HA implant.

Fig. 4. The surface observation according to the calcium ion dissolution characteristic of HA.
(a) Conventional HA-(4hr)
(b) TSIII HA-(24hr)
(c) Conventional HA-(28day)
(d) TSIII HA-(28day).
Architectural Features of the TSIII HA Implant

June-Cheol Hwang, Hong-Young Choi, Tae-Gwan Eom
Scientific Poster, Osstem World Meeting 2011

Objective:
The highly crystallized TSIII HA implant was uniquely treated after the hydroxyapatite (HA) coating process. In this study, the structural characteristics of the HA-coated TSIII HA implant were evaluated.

Study design:
The structural characteristics of two products: the Osstem TSIII HA implant (ø4.0 x 10mm) and the Zimmer TSV HA implant (ø4.1 x 11mm) were compared and examined based on product design, surface image, degree of crystallinity, stability of HA coating after implantation in pig bone, tensile bonding strength, and shear bonding strength.

Results:
1) Surface morphology observation:
In Fig. 1, the typical HA surface with a plasma spray is shown through the SEM image of a TSIII and TSV implant surface.

2) Degree of crystallinity

3) Stability of HA coating layer after implantation
The SEM observation result of the HA coating layer was altogether excellent after implanting a TSIII HA and TSV HA implant with the implanted torque of a 35 Ncm in the pig bone.

4) Tensile and shear strength evaluation

Conclusions:
The TSIII HA implant displayed excellent initial stability and placement convenience in terms of design in the structural analysis. The quality and performance of this HA coating product are considered equal to the products of renowned manufacturers overseas.
Comparison of Clinical Outcomes of Sinus Bone Graft with Simultaneous Implant Placement: 4-month and 6-month Final Prosthetic Loading

Objectives:
The aim of this study was to compare the survival rate and surrounding tissue condition of sinus bone grafts with simultaneous implant placement between 4-month and 6-month occlusal loading after implantation.

Study design:
Twenty-seven patients (61 implants) who were treated with sinus bone grafts (sinus lateral approach) and simultaneous osteom GS II implant placement from July 2007 to June 2008 were included in this study. Of these patients, 14 (31 implants) were in the 4-month loading group, and 13 (30 implants) were in the 6-month loading group. We investigated the implantation type (submerged or nonsubmerged), sinus membrane perforation, type of prosthesis, opposed tooth type, primary and secondary stability of implants, and crestal bone loss around implant and surrounding tissue conditions.

Results:
The amounts of crestal bone-loss at the final recall time (12.56 ± 5.95 mm after loading) of the 4-month and 6-month loading groups were 0.19 ± 0.32 mm and 0.39 ± 0.86 mm, respectively. However, the difference between groups was not statistically significant (P = .211). The width of keratinized mucosa, gingival index, plaque index, and pocket depth of the 4-month and 6-month loading groups were 2.50 ± 1.69 mm and 1.73 ± 1.40 mm (P = .081), 0.72 ± 0.63 and 0.59 ± 0.96 (P = .671), 1.11 ± 0.96 and 0.76 ± 0.79 (P = .226), 3.56 ± 0.96 mm and 3.65 ± 1.06 mm (P = .768), respectively. The primary stabilities of implants in the 4-month and 6-month loading groups were 61.96 ± 12.84 and 56.06 ± 15.55 (P = .120), and the secondary stabilities were 71.85 ± 6.80 and 66.51 ± 11.28 (P = .026), respectively. The secondary stability of the 4-month group was significantly higher than that of the 6-month group. There was no statistical difference (P > .05) between the 4-month and 6-month loading groups regarding the implantation type (submerged or nonsubmerged), sinus membrane perforation, type of prosthesis, or opposed tooth type. In the 4-month and 6-month groups, all of the implants survived until the final recall time.

Conclusions:
For the cases in which the residual bone was 3 mm and primary implant stability could be obtained, we conclude that loading is possible 4 months after the sinus bone graft and simultaneous implant placement.

Prospective Study of Tapered RBM Surface Implant Stability in the Maxillary Posterior Area

Objectives:
The purpose of this study was to evaluate the stability of tapered resorbable blasting media (RBM) surface implants in the posterior maxilla.

Study design:
From September 2008 through January 2010, 20 patients (9 male, 11 female) who were treated with tapered GS III implants at Seoul National University Bundang Hospital were identified. Thirty-eight implants (14 premolar and 24 molar) were placed in maxillary posterior areas.

Results:
In this study, 38 taper-shaped implants were placed in 20 patients who were followed up for 1 year. The following conclusions were obtained. 1. Regarding implant stability, the average ISQ value at the time of placement was 63.6 and was 74.4 at the time of the 2nd surgery, which was a significant increase. The cumulative survival rate of 12 months after prostheses placement was 97.4%, and the success rate was 94.7%. 2. The resorption rate of marginal bones 12 months after prostheses was an average of 0.19 mm, and stable results were shown. Significant differences according to the diameter and length of implants were not shown. 3. The group that received maxillary sinus bone graft was compared with the group that did not receive the procedure. The ISQ value and the marginal bone resorption rate were not significantly different.

Conclusions:
There was no significant difference in crestal bone loss according to implant diameter or length or sinus bone graft. This study showed the favorable clinical outcome of tapered implants that were placed in the maxillary posterior area.

Table 1. Condition of the adjacent tissue around the implants

<table>
<thead>
<tr>
<th>Index</th>
<th>Occlusal loading</th>
<th>4 months</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crestral bone loss (mm)</td>
<td>0.19 ± 0.33</td>
<td>0.39 ± 0.96</td>
<td></td>
</tr>
<tr>
<td>Width of keratinized mucosa (mm)</td>
<td>2.50 ± 1.69</td>
<td>1.73 ± 1.40</td>
<td></td>
</tr>
<tr>
<td>Plaque index</td>
<td>1.11 ± 0.96</td>
<td>0.76 ± 0.79</td>
<td></td>
</tr>
<tr>
<td>Gingival index</td>
<td>0.72 ± 0.80</td>
<td>0.19 ± 0.69</td>
<td></td>
</tr>
<tr>
<td>Probing pocket depth (mm)</td>
<td>3.56 ± 0.98</td>
<td>3.65 ± 1.06</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Residual bone height (mm)

<table>
<thead>
<tr>
<th>Occlusal loading</th>
<th>4 months</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before operation</td>
<td>5.38 ± 1.95</td>
<td>4.52 ± 1.71</td>
</tr>
<tr>
<td>Immediately after operation</td>
<td>17.36 ± 3.22</td>
<td>16.64 ± 1.87</td>
</tr>
<tr>
<td>1 year after operation</td>
<td>15.58 ± 2.03</td>
<td>15.46 ± 2.29</td>
</tr>
</tbody>
</table>

Table 3. Primary and secondary stability (implant stability quotient) of implants

<table>
<thead>
<tr>
<th>Occlusal loading</th>
<th>4 months</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>61.96 ± 12.84</td>
<td>56.06 ± 15.55</td>
</tr>
<tr>
<td>Secondary</td>
<td>71.85 ± 6.80</td>
<td>66.51 ± 11.28</td>
</tr>
</tbody>
</table>

Table 4. CBL 12 month after final prosthetic delivery according to diameter and length

<table>
<thead>
<tr>
<th>Diameter</th>
<th>CBL (mm)</th>
<th>3 months</th>
<th>6 months</th>
<th>12 months</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>2.03 ± 0.54</td>
<td>0.47 ± 0.34</td>
<td>0.19 ± 0.47</td>
<td>< .001</td>
<td></td>
</tr>
<tr>
<td>Wide</td>
<td>1.95 ± 0.96</td>
<td>0.47 ± 0.34</td>
<td>0.19 ± 0.47</td>
<td>< .001</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Comparison between implants with and without sinus grafts

<table>
<thead>
<tr>
<th>ISQ</th>
<th>With sinus graft (N=38)</th>
<th>Without sinus graft (N=20)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st op</td>
<td>67.6 ± 7.4</td>
<td>62.5 ± 15.7</td>
<td>.001</td>
</tr>
<tr>
<td>2nd op</td>
<td>75.3 ± 6.6</td>
<td>74.0 ± 7.4</td>
<td>.031</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CBL</th>
<th>1st op</th>
<th>0.01 ± 0.02</th>
<th>0.08 ± 0.16</th>
<th>452</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd op</td>
<td>0.01 ± 0.03</td>
<td>0.11 ± 0.27</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>12M</td>
<td>0.07 ± 0.13</td>
<td>0.23 ± 0.53</td>
<td>381</td>
<td></td>
</tr>
</tbody>
</table>

* Mann-Whitney U-test was performed; insignificant differences were seen between the group with sinus graft and the group without sinus graft (p > .05).
A 1-year Prospective Clinical Study of Soft Tissue Conditions and Marginal Bone Changes around Dental Implants after Flapless Implant Surgery

Seung-Mi Jeong, Byung-Ho Choi, Ji-Hun Kim, Feng Xuan, Du-Hyeong Lee, Chun-Ui Lee

Background:
Despite several reports on the clinical outcomes of flapless implant surgery, limited information exists regarding the clinical conditions after flapless implant surgery.

Objectives:
The objective of this study was to evaluate the soft tissue conditions and marginal bone changes around dental implants 1 year after flapless implant surgery.

Study design:
For the study, 432 implants were placed in 241 patients by using a flapless 1-stage procedure. In these patients, peri-implant soft tissue conditions and radiographic marginal bone changes were evaluated 1 year after surgery.

Results:
None of the implants were lost during follow-up, giving a success rate of 100%. The mean probing depth was 2.1 mm (SD 0.7), and the average bleeding on probing index was 0.1 (SD 0.3). The average gingival index score was 0.1 (SD 0.3), and the mean marginal bone loss was 0.3 mm (SD 0.4 mm; range 0.0-1.1 mm). Ten implants exhibited bone loss of >1.0 mm, whereas 125 implants experienced no bone loss at all.

Conclusions:
The results of this study demonstrate that flapless implant surgery is a predictable procedure. In addition, it is advantageous for preserving crestal bone and mucosal health surrounding dental implants.

A Relaxed Implant Bed: Implants Placed After Two Weeks of Osteotomy with Immediate Loading- A One Year Clinical Trial

Bansal DJ, Kedige DS, Bansal DA, Anand DS
Accepted in 2010 J Oral Implantol

Background:
A waiting period of two weeks after osteotomy increases the surrounding tissue activity to its maximum level as collagen formation and neoangiogenesis represents a relaxed and acceptable implant bed configuration.

Objectives:
The aim of the present study was a clinical and radiologic evaluation of early osteotomy with implant placement delayed for two weeks with immediate loading in the anterior and premolar region with minimally invasive approach.

Study design:
A total of seven GS II implants (Osstem) were placed in six patients. Osteotomy was done followed by flap closure without the placement of implant. After approximately waiting for a period of two weeks, implant placement was done which were loaded immediately with provisional crown in implant protected occlusion. It was replaced by definitive restoration after 6-8 weeks which was considered as baseline. Implant stability and marginal bone levels were assessed with clinical and radiological parameters at baseline, 6th and 12th month intervals.

Results:
None of the implants were found mobile during the one year period. The amount of average mean marginal bone loss was 0.4 mm over the one year follow up period.

Conclusions:
The present study, early osteotomy with delayed implant placement showed negligible crestal bone loss with no mobility.

Table 1. Probing depth, gingival index, bleeding on probing index, and crestal bone loss when implants were placed without a flap

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Mean ± SD</th>
<th>% Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2.1 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>6th Month</td>
<td>2.17 ± 0.41</td>
<td>-8.5%</td>
</tr>
<tr>
<td>12th Month</td>
<td>2.33 ± 0.52</td>
<td>-16.5%</td>
</tr>
</tbody>
</table>

Table 2. Mean values of peri-implant probing depth

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Mean ± SD</th>
<th>% Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2.36 ± 0.54</td>
<td>-</td>
</tr>
<tr>
<td>6th Month</td>
<td>2.29 ± 0.33</td>
<td>3.36%</td>
</tr>
<tr>
<td>12th Month</td>
<td>2.08 ± 0.34</td>
<td>12.18%</td>
</tr>
</tbody>
</table>

Table 3. Mean values of marginal bone levels on mesial aspect

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Mean ± SD</th>
<th>% Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.36 ± 0.54</td>
<td>-</td>
</tr>
<tr>
<td>6th Month</td>
<td>0.37 ± 0.35</td>
<td>13.86%</td>
</tr>
<tr>
<td>12th Month</td>
<td>0.36 ± 0.41</td>
<td>-13.86%</td>
</tr>
</tbody>
</table>

Table 4. Mean values of marginal bone levels on distal aspect

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Mean ± SD</th>
<th>% Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.54 ± 0.50</td>
<td>-</td>
</tr>
<tr>
<td>6th Month</td>
<td>0.50 ± 0.41</td>
<td>5.55%</td>
</tr>
<tr>
<td>12th Month</td>
<td>0.53 ± 0.42</td>
<td>1.85%</td>
</tr>
</tbody>
</table>
Objectives:
This prospective study sought to verify the stability of three types of short implants measuring 7mm or less.

Study design:
Implants measuring 7mm or less were placed in patients at multicenter dental clinics in Korea, China, Taiwan, and Singapore. Initial stability, intraoperative and postoperative complications, crestal bone loss, and survival rate of the implant were prospectively evaluated.

Results:
The primary stability of a 6mm implant was lower than that of a 7mm implant. The marginal bone loss of short implants measuring less than 7mm was minimal. Complications such as wound dehiscence, implant mobility, and peri-implant mucositis developed, and these were associated with initial implant failure. The short-term survival rate of 6mm implant was 93.7%, and that of 7mm implant, 96.6%.

Conclusions:
Short implant for the mandible with insufficient height for the residual ridge can be selectively used. Poor primary stability and wound dehiscence can cause osseointegration failure and alveolar bone loss.

Objectives:
The objective of this study was to evaluate the sinus bone graft resorption and marginal bone loss around the implants when allograft and xenograft are used.

Study design:
Sinus bone grafting and implant placement (Osstem, Korea) were performed on 28 patients from September 2003 to January 2006. In group I, a total of 49 implants were placed in 23 maxillary sinus areas of 16 patients together with bone graft using xenograft (Bio-Oss®) and a minimal amount of autogenous bone. In group II, 24 implants were placed in 13 maxillary sinus areas of 12 patients together with bone graft using a minimal amount of autogenous bone and equal amounts of allograft (Regenaform®) and Bio-Oss® in group II.

Results:
Early osseointegration failures of 3 implants in 3 patients (group I: 1 patient, 1 implant; group II: 2 patients, 2 implants) were observed, and revisions were performed for these 3 implant sites, followed by complete prosthetic treatments. The average height of the remaining alveolar bone before the surgery, immediately after the surgery, and 1 year after the surgery was 4.9 mm, 19.0 mm, and 17.2 mm, respectively, in group I. In group II, the average height of the remaining alveolar bone was 4.0 mm, 19.2 mm, and 17.8 mm before the surgery, immediately after the surgery, and 1 year after the surgery, respectively. The average marginal bone loss 1 year after prosthetic loading and after 20.8 months’ follow-up was 0.6 mm and 0.7 mm, respectively, in group I. A 93.9% success rate was observed for group I, with 3 implants showing bone resorption of >1.5 mm within 1 year of loading. For group II, the average marginal bone loss 1 year after prosthetic loading and after 19.7 months’ follow-up was 0.7 mm and 1.0 mm, respectively. An 83.3% success rate was observed for group II, with 4 implants showing bone resorption of >1.5 mm within 1 year of loading.

Conclusions:
Based on the observations in this study, it was concluded that mixed grafting with demineralized bone matrix for maxillary sinus bone grafting has no significant short-term merit regarding bone healing and stability of implants compared with anorganic bovine bone alone.
Evaluation of Peri-implant Tissue Response according to the Presence of Keratinized Mucosa

Bum-Soo Kim, Young-Kyun Kim, Pi-Young Yun, Yang-Jin Yi, Hye-Jeong Lee, Su-Gwan Kim, Jun-Sik Son

Objectives:
The purpose of this study was to evaluate the responses of peri-implant tissue in the presence of keratinized mucosa.

Study design:
A total of 276 implants were placed in 100 patients. From the time of implant placement, the average follow-up observation period was 13 months. The width of keratinized mucosa was compared and evaluated through probing depth, pocket depth, and marginal bone loss. Based on implant surface treatments, the width of keratinized mucosa and crestal bone loss did not show a significant difference.

Conclusions:

Results:
The GI, PI, and pocket depth in the presence or absence of the keratinized gingiva did not show statistical significant differences. However, mucosal recession and marginal bone resorption experienced statistically significant increases in the group of deficient keratinized mucosa. Based on implant surface treatments, the width of keratinized mucosa and crestal bone loss did not show a significant difference.

Table 1. Width of keratinized mucosa according to implant systems

Implant system	Width of keratinized mucosa (mm)	Sig.
SLA	0.64 ± 0.40	.157
Anodizing	0.40 ± 0.50	.56 ± 0.51
RM Resorbable blasting media/Osstem (US II)	.56 ± 0.51	

Table 2. Crestal bone loss according to implant system

Implant system	Bone loss (mm)	Sig.
Implantium	0.54 ± 0.63	.36
TiUnite	0.44 ± 0.72	.07
GS II	0.39 ± 0.71	.06
US II	0.80 ± 0.84	.06

Morphogenesis of the Peri-implant Mucosa: A Comparison between Flap and Flapless Procedures in the Canine Mandible

Tae-Min You, Byung-Ho Choi, Jingxu Li, Feng Xuan, Seung-Mi Jeong, Sun-Ok Jang

Objective:
Although it has been shown that the exclusion of the mucoperiosteal flap can prevent postoperative bone resorption associated with flap elevation, there have been only a few studies on the peri-implant mucosa following flapless implant surgery. The purpose of this study was to compare the morphogenesis of the peri-implant mucosa between flap and flapless implant surgeries by using a canine mandible model.

Study design:
In six mongrel dogs, bilateral edentulated flat alveolar ridges were created in the mandible. After 3 months of healing, 2 implants were placed in each side by either the flap or the flapless procedure. Three months after implant insertion, the peri-implant mucosa was evaluated by using clinical, radiologic, and histometric parameters, which included the gingival index, bleeding on probing, probing pocket depth, marginal bone loss, and the vertical dimension of the peri-implant tissues.

Results:
The height of the mucosa, length of the junctional epithelium, gingival index, bleeding on probing, probing depth, and marginal bone loss were all significantly greater in the dogs that had the flap procedure than in those that had the flapless procedure (p < .05).

Conclusion:
These results indicate that gingival inflammation, the height of junctional epithelium, and bone loss around nonsubmerged implants can be reduced when implants are placed without flap elevation.

Table 1. Parameters of probing depth, gingival index and bleeding on probing around implants when placed with or without a flap

Probing depth (mm)	Flap group	Flapless group	P value
1.7 ± 0.3	1.0 ± 0.3	.006	
Gingival index	0.9 ± 0.5	0	.005
Bleeding on probing	0.7 ± 0.4	0	.005

Table 2. Results of the histometric measurements in both the flap and flapless groups

PMe-B (mm)	Flap group	Flapless group	P value
3.5 ± 0.6	2.2 ± 0.2	.037	
PMe+E (mm)	2.2 ± 0.3	1.2 ± 0.3	.033
aJE-B (mm)	1.3 ± 0.2	1.0 ± 0.2	.018
Fatigue Characteristics of Five Types of Implant-Abutment Joint Designs

Il-Song Park, Sang-Yong Won, Tae-Sung Bae, Kwang-Yeob Song, Charn-Woon Park, Tae-Gwan Eom, Chang-Mo Jeong

Introduction:
This study evaluated the fatigue limit of five implant-abutment combinations (Osstem Implant Co. Korea). The fatigue tests were performed to evaluate the impact of fatigue on the effectiveness of dental implant-abutment assemblies with different joint designs and with different abutment materials, with a special emphasis on the pattern of the dental implant fixture and the abutment, as well as the effect of the abutment material on the stability of the joint area.

Materials and methods:
Each implant-abutment system (EXTNTS: US II-TiN Coated, EXANTS: US III-Safe, EXZRTS: BioTapered Double Thread-ZirAce, INTIWS GS II-GS Transfer, INTICS SS I-Solid) at the implantation site was performed to measure the bone height in the peri-implant bone. Data were analyzed by Wilcoxon’s signed rank test.

Results & Conclusions:
The mean static strength of the EXZRTS group was largest at 1772.2 N and that of the INTIWS group was smallest at 893.8 N. ... strength than the group with the internal hexagonal structure pattern (p < .05). The fatigue limit that guarantees a 5 × 10^6 cycle life according to the condition established by the ISO/FDIS 14801:2003(E) in all experiment groups was shown to be 300–800 N. The fatigue limit that was compared with the static strength was found to be relatively high in the cases with a tapered shape as an external hexagonal shape. In the cases where the shape of the screw joint was an external hexagonal structure, the fatigue limit was relatively higher in cases using the zirconia abutment than the titanium abutment. The fatigue fracture of the zirconia abutment was initiated in the margin with a subsequent sudden unstable fracture.

Table 1. Implant systems used in this study

<table>
<thead>
<tr>
<th>Group</th>
<th>Fixture</th>
<th>Abutment</th>
<th>Screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTNTS</td>
<td>US II (US2R413)</td>
<td>TiN Coated (CAR535C)</td>
<td>ASR200</td>
</tr>
<tr>
<td>EXANTS</td>
<td>US III (US3R413)</td>
<td>Safe (SFAR542C)</td>
<td>SFSR2S</td>
</tr>
<tr>
<td>EXZRTS</td>
<td>BioTapered Double Thread-ZirAce</td>
<td>ASR200</td>
<td></td>
</tr>
<tr>
<td>INTIWS</td>
<td>GS II (GS2R4013)</td>
<td>GS Transfer (GSTA5430S)</td>
<td>GSASR</td>
</tr>
<tr>
<td>INTICS</td>
<td>SS I (SS1R1813)</td>
<td>Solid (SSS485)</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 1. Fatigue load vs cycles to failure of each experimental group: (a) EXTNTS, (b) EXANTS, (c) EXZRTS, (d) INTIWS, (e) INTICS.

Influence of Premature Exposure of Implants on Early Crestal Bone Loss: An Experimental Study in Dogs

Je-Hyeon Yoo, Byung-Ho Choi, Jingxu Li, Han-Sung Kim, Chang-Yong Ki, Feng Xuan, Seung-Mi Jeong

Objective:
Several studies have reported on spontaneous early exposure of submerged implants, suggesting that exposed implants have greater bone loss than nonexposed implants. The purpose of this study was to compare the effects of implant-abutment connections and partial implant exposure on crestal bone loss around submerged implants.

Study design:
Bilateral, osteotomized, flat alveolar ridges were created in the mandible of 6 mongrel dogs. After 3 months of healing, 2 fixtures were placed on each side of the mandible following a commonly accepted 2-stage surgical protocol. The fixtures on each side were randomly assigned to 1 of 2 procedures. In the first, a cover screw was connected to the fixture, and the incised gingiva was partially removed to expose the cover screw (partially exposed group). In the second, a healing abutment was connected to the fixture so that the coronal portion of the abutment remained exposed to the oral cavity (abutment-connected group). After 8 weeks, micro-computed tomography (micro-CT) at the implantation site was performed to measure the bone height in the peri-implant bone. Data were analyzed by Wilcoxon’s signed rank test.

Results:
The average bone height was greater for the abutment-connected fixture (9.8 ± 0.5 mm) than for the partially exposed fixture (9.3 ± 0.5 mm; p < .05).

Conclusion:
These results suggest that when implant exposure is detected, the placement of healing abutments may help limit bone loss around the submerged implants.

Fig. 1. Clinical features after implant placement. In implant A, a cover screw was connected to the fixture, and the incised gingiva was partially removed to expose the implant. In implant B, a healing abutment was connected to the fixture so that the coronal portion of the abutment remained exposed to the oral cavity.

Fig. 2. Three-dimensional micro-CT showing the bone (yellow) around implants (gray).

A, Partially exposed implant.
B. Abutment-connected implant. Buccal, buccal side of the alveolus; Lingual, lingual side of the alveolus.

Fig. 3. Fatigue load vs cycles to failure of each experimental group: (a) EXTNTS, (b) EXANTS, (c) EXZRTS, (d) INTIWS, (e) INTICS.

Fig. 1. Static fracture strength of each experimental group.
Fig. 2. Load vs displacement curve of EXTNTS group.
The Effect of Various Thread Designs on the Initial Stability of Taper Implants

Ju Hee Park, Yiung-Jun Lim, Myung-Joo Kim, Ho-Beom Kwon

Statement of problem:
Primary stability at the time of implant placement is related to the level of primary bone contact. The level of bone contact with implant is affected by thread design, surgical procedure and bone quality, etc.

Purpose:
The aim of this study was to compare the initial stability of the various taper implants according to the thread designs, half of which were engaged to inferior cortical wall of type IV bone (Group 1) and the rest of which were not engaged to inferior cortical wall (Group 2) by measuring the implant stability quotient (ISQ) and the removal torque value (RTV).

Material & Methods:
In this study, 6 different implant fixtures with 10 mm length were installed. In order to simulate the sinus inferior wall of type IV bone, one side cortical bone of swine rib was removed. 6 different implants were installed in the same bone block following manufacturer’s recommended procedures. Total 10 bone blocks were made for each group. The height of Group 1 bone block was 10 mm for engagement and that of group 2 was 13 mm. The initial stability was measured with ISQ value using Osstell mentor™ and with removal torque using MGT50 torque gauge.

Results:
In this study, we found the following results. 1. In Group 1 with fixtures engaged to the inferior cortical wall, there was no significant difference in RTV and ISQ value among the 6 types of implants. 2. In Group 2 with fixtures not engaged to the inferior cortical wall, there was significant difference in RTV and ISQ value among the 6 types of implants (p < .05). There was significant difference in RTV and ISQ value according to whether fixtures were engaged to the inferior cortical wall or not (p < .05). 4. Under-drilling made RTV and ISQ value increase significantly in the NT implants which had lower RTV and ISQ value in Group 2 (p < .05).

Conclusions:
Without being engaged to the inferior cortical wall fixtures had initial stability affected by implant types. Also in poor quality bone, under-drilling improved initial stability.

Effect of Casting Procedure on Screw Loosening of UCLA Abutment in Two Implant-Abutment Connection Systems

Chun-Yeo Ha, Chang-Whe Kim, Young-Jun Lim, Myung-Joo Kim
J Kor Acad Prosthodont 2008;46(3):246-54

Statement of problem:
The cast abutment has advantages of overcoming angulation problem and esthetic problem. However, when a gold-machined UCLA abutment undergoes casting, the abutment surfaces in contact with the implant may change.

Purpose:
The purpose of this study was to compare the detorque values of prefabricated machined abutments with gold-machined cast-on UCLA abutments before and after casting in two types of internal implant-abutment connection systems: (1) internal hexagonal joint, (2) internal octagonal joint. Furthermore, the detorque values of two implant-abutment connection systems were compared.

Material & Methods:
Twenty internal hexagonal implants with an 11-degree taper and twenty internal octagonal implants with an 8-degree taper were acquired. Ten prefabricated titanium abutments and ten gold-premachined UCLA abutments were used for each system. Each abutment was torqued to 30 Ncm according to the manufacturer’s instructions and detorque value was recorded. The detorque values were measured once more, after casting with gold alloy for UCLA abutment, and preparation for titanium abutments. Group means were calculated and compared using independent t-test and paired t-test (α = .05).

Results:
The results were as follows: 1. The detorque values between titanium abutments and UCLA-type abutments showed significant differences in internal octagonal implants (p < .05), not in internal hexagonal implants (p > .05). 2. In comparison of internal hexagonal and octagonal implants, the detorque values of titanium abutments had significant differences between two connection systems on the initial analysis (p < .05), not on the second analysis (p > .05) and the detorque values of UCLA-type abutments were not significantly different between two connection systems (p > .05). 3. The detorque values of titanium abutments and UCLA-type abutments decreased significantly on the second analysis than the initial analysis in internal hexagonal implants (p < .05), not in internal octagonal implants (p > .05).

Conclusions:
Casting procedures of UCLA-type abutments had no significant effect on screw loosening in internal implant-abutment connection systems, and UCLA-type abutments showed higher detorque values than titanium abutments in internal octagonal implants.

Table 1. Components and dimensions of tested specimens

<table>
<thead>
<tr>
<th>Internal hexa</th>
<th>Group 1</th>
<th>Group 2</th>
<th>ISQ (N)</th>
<th>Gold Abutment number</th>
<th>Screw number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS III</td>
<td>Internal abutment</td>
<td>4.0 x 10 mm</td>
<td>150</td>
<td>GS21401011</td>
<td>02G3001</td>
</tr>
<tr>
<td>SS III</td>
<td>Internal abutment</td>
<td>4.1 x 11.5 mm</td>
<td>170</td>
<td>SS21401011</td>
<td>02G44510S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal octa</th>
<th>Group 3</th>
<th>Group 4</th>
<th>ISQ (N)</th>
<th>Gold Abutment number</th>
<th>Screw number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS III</td>
<td>Internal abutment</td>
<td>5.5 x 11.5 mm</td>
<td>200</td>
<td>SS21401011</td>
<td>02G3001</td>
</tr>
<tr>
<td>SS III</td>
<td>Internal abutment</td>
<td>5.5 x 11.5 mm</td>
<td>200</td>
<td>SS21401011</td>
<td>02G44510S</td>
</tr>
</tbody>
</table>

Fig. 1. Characteristics of thread design used in this study.
A. GS III (Osstem, Seoul, South Korea),
B. Osseotite NT™ (3i, Florida, USA),
C. Replace® Select (Noble Biocare, Gothenburg, Sweden),
D. Girius Quick (Neoplanet, Seoul, South Korea),
E. US III (Osstem, Seoul, South Korea),
F. Neoplan (Warantec, Seoul, South Korea.)

Fig. 2. A. 6 implants were installed with engaging (Group 1).
B. 6 implants were installed without engaging (Group 2).

Fig. 3. Titanium abutments after preparation (group 1: Internal hexagonal implant, group 3: internal hexagonal implant).
Fig. 4. UCLA-type abutments after casting procedure (group 2: Internal hexagonal implant, group 4: internal octagonal implant).
Influence of Tightening Torque on Implant-Abutment Screw Joint Stability

Hyun-Mo Shin, Chang-Mo Jeong, Young-Chan Jeon, Mi-Jeong Yun, Ji-Hoon Yoon
J Kor Acad Prosthodont 2008;40(4):396-408

Statement of problem:
Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment.

Purpose:
The purpose of this study was to evaluate the influence of tightening torque on the implant-attachment screw joint stability.

Material & Methods:
Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cycling load up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss rates were calculated for the purpose of comparing the effect of tightening torque and joint connection types between implant and abutment on the joint stability.

Results & Conclusions:
1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (p < .05).
2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (p > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (p < .05).
3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (p < .05).
4. Postload tightening torque loss rates tended to increase in order of SS II, GS II and US II system.
5. There was no correlation between initial removal torque value and postload tightening torque loss rate (p > .05).

Objectives:
Given that the orientation of the transducer (mesiodistal or buccolingual) affects the data obtained from a piezoelectric resonance frequency analysis (RFA), this study evaluated whether it is necessary to use measurements taken in two different directions (mesiodistal and buccolingual) when using magnetic RFA to assess changes in the stiffness of dental implants.

Study design:
A prospective clinical trial was completed, in a total of 53 patients, on 71 non-submerged dental implants that were inserted to replace the unilateral loss of mandibular molar. All of the implants were of the same diameter (4.1 mm), length (110 mm), and collar height (2.8 mm). The implant stability quotient (ISQ) was measured during the surgical procedure, and at 4 and 10 weeks after surgery. Measurements were taken twice in each direction: in the buccolingual direction from the buccal side and in the mesiodistal direction from the mesial side. The average of two measurements in each direction was regarded as the representative ISQ of that direction. The higher and lower values of the two ISQs (buccolingual and mesiodistal) were also classified separately. In addition, the variation in ISQ was quantified by subtracting the lower value from the higher value, and the implants were classified into two groups according to this variation: one with ISQ variation of 3 or more and the other with a variation of <3.

Results:
There were no differences between the two ISQs when measured from different directions, but there were significant differences between the higher and lower values of the ISQs at each measurement point. A significant difference was also observed between the two ISQ variation groups in the pattern of change of the lower value for the period from immediately after surgery to 10 weeks after surgery.

Conclusions:
Acquisition of two directional measurements and classification of the higher and lower values of the two directional ISQs may allow clinicians to detect patterns of change in ISQ that would not be identified if only one directional measurement was made.

Table 1. The change in implant stability quotient (ISQ) discrepancy measured from two different directions at each measurement time point

<table>
<thead>
<tr>
<th>Diameter</th>
<th>ISQ discrepancy* (mean SD)</th>
<th>P-value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straumann (N=25)</td>
<td>During surgery</td>
<td>1.1 ± 2.72</td>
</tr>
<tr>
<td>At post-operative week 10</td>
<td>-1.4 ± 1.48</td>
<td>0.37</td>
</tr>
<tr>
<td>Osstem SS II (N=28)</td>
<td>During surgery</td>
<td>0.36 ± 3.6</td>
</tr>
<tr>
<td>At post-operative week 10</td>
<td>-0.14 ± 1.34</td>
<td>0.17</td>
</tr>
</tbody>
</table>

* ISQ discrepancies were calculated by subtracting the BL from the MD at each time point.
** P-values were calculated for differences between two time points (during surgery and at postoperative week 10) using a Wilcoxon signed-ranks test.

Fig. 1. The comparison of the pattern of change in the implant stability quotient (ISQs) obtained from the four measures from surgery to 10 weeks after surgery.
1) Group-a: the group with ISQ variation of 3 or more.
2) Group-b: the group with ISQ variation of <3.
(a) Pattern of change of MN.
(b) Pattern of change of MX.
(c) Pattern of change of BL.
(d) Pattern of change of MD.

Fig. 1. Change in the mean ISQ values during healing up to 12 weeks.
*: Statistically significant change compared to surgery (P < 0.05)

Fig. 2. Evaluation of implant stability between implant placement and 12 weeks for implant placed in the maxilla and in the mandible.
*: Statistically significant effective factor for rate of change between surgery and 3 months (P < 0.05)

Results:
The purpose of the present study was to analyze the implant stability quotient (ISQ) values for Korean non-submerged type implant and determine the factors that affect implant stability.

Study design:
A total of 49 Korean non-submerged type implants were installed in 24 patients, and their stability was measured by resonance frequency analysis (RFA) at the time of surgery, and 1, 2, 3, 4, 8, 12 weeks postoperatively. The data for implant site, age, sex, implant length and diameter, graft performance, bone type, and insertion torque were analyzed.

Conclusions:
Acquisition of two directional measurements and classification of the higher and lower values of the two directional ISQs may allow clinicians to detect patterns of change in ISQ that would not be identified if only one directional measurement was made.

Table 1. Statistical Rate of Change Data for ISQ Values for Different Variables

<table>
<thead>
<tr>
<th>Diameter</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxilla/Mandible</td>
<td>0.6141 > 0.05</td>
</tr>
<tr>
<td>Sex</td>
<td>0.9918 > 0.05</td>
</tr>
<tr>
<td>Anterior/Posterior</td>
<td>0.9402 > 0.05</td>
</tr>
<tr>
<td>Length</td>
<td>0.8317 > 0.05</td>
</tr>
<tr>
<td>Diameter</td>
<td>0.0322 < 0.05</td>
</tr>
<tr>
<td>Age</td>
<td>0.3636 > 0.05</td>
</tr>
<tr>
<td>Graft</td>
<td>0.3635 > 0.05</td>
</tr>
<tr>
<td>Bone type</td>
<td>0.8354 > 0.05</td>
</tr>
<tr>
<td>Insertion torque</td>
<td>0.0875 > 0.05</td>
</tr>
</tbody>
</table>

*: Statistically significant effective factor for rate of change between surgery and 3 months (P < 0.05)
Objectives:
The objective of this study was to evaluate the peri-implant’s hard and soft tissue response associated with the 1-stage, nonsubmerged, endosseous dental implant.

Study design:
A multicenter retrospective clinical evaluation was performed on 339 nonsubmerged implants placed in 108 patients at 5 clinical centers between January 2003 and December 2007.

Results:
After a mean follow-up period of 30 months, the mean crestal bone resorption in 339 implants was 0.43 mm. The survival and success rates were 99.1% and 95.1%, respectively. The mean calculus, inflammatory, and plaque indices were 0.13, 0.37, and 0.73, respectively, and the mean width of buccal keratinized mucosa was observed to be 2.43 mm.

Conclusions:
The short- to intermediate-term evaluation of the 1-stage, nonsubmerged, endosseous implant yields relatively high survival and success rates.

Table 1. Comparison of marginal bone loss between the two implants

<table>
<thead>
<tr>
<th>Type of Implant</th>
<th>No. of implants</th>
<th>No. of implants survival of follow-up</th>
<th>Failures</th>
<th>Survival, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the 10 weeks after surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal</td>
<td>25</td>
<td>0.06 ± 0.64</td>
<td>26</td>
<td>0.76 ± 0.46</td>
</tr>
<tr>
<td>Distal</td>
<td>25</td>
<td>0.83 ± 0.44</td>
<td>26</td>
<td>0.70 ± 0.51</td>
</tr>
<tr>
<td>Avg</td>
<td>25</td>
<td>0.70 ± 0.51</td>
<td>26</td>
<td>0.70 ± 0.43</td>
</tr>
<tr>
<td>One year follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal</td>
<td>24</td>
<td>1.71 ± 0.57</td>
<td>26</td>
<td>0.43 ± 0.68</td>
</tr>
<tr>
<td>Distal</td>
<td>24</td>
<td>0.93 ± 0.39</td>
<td>26</td>
<td>0.65 ± 0.37</td>
</tr>
<tr>
<td>Avg</td>
<td>24</td>
<td>1.27 ± 0.46</td>
<td>26</td>
<td>0.70 ± 0.42</td>
</tr>
</tbody>
</table>

* The p-values were calculated using Mann–Whitney test.
† Also mean the radiographic measurement area for calculation of marginal bone loss.
‡ Avg means the average value of proximal and distal bone loss.

Fig. 1. Periapical radiograph taken immediately after implant placement. In the #36 area, an implant, 4.8 mm in diameter and 10 mm in length, was placed. The crestal bone level in the vicinity of implant was considered as the baseline.

Fig. 2. Periapical radiograph taken 1 year after implant placement. Based on the baseline, the crestal bone level on the radiograph taken immediately after surgery, from mesial side (a) and distal side (b), the vertical length to the first implant bone contact area was measured. The crestal bone resorption was calculated as the baseline subtracted by the average obtained. In this case, a=0.8 mm and b=1.2 mm, and after 1 year; the mean amount of crestal bone resorption was 1.2 mm.
Implant-supported fixed and removable prostheses provide a proper treatment modality with reliable success. The SS II implants is a one-stage nonsubmerged threaded titanium implants with Resorbable Blasting Media (RBM) surface developed by Osstem company (Seoul, Korea) in October of 2002.

This study is to evaluate the survival rate of the SS II implants for 4 years using radiographic parameters and to review the retrieved implants by the cytotoxicity tests.

Since September 2003, 439 SS II implants had been used for 173 patients at Ewha Women University Medical Center in Korea. Patients consisted of 91 females (52.6 %) and 82 males (47.4 %). The patients' mean age was 42 ± 16 years, ranging from 21 to 83 years. The follow-up period ranged from 9 to 46 months (mean F/U 24.2 ± 10.2 months).

The results are as follows:
1. Of 439 implants, 17 implants were removed and 4-year cumulative survival rate was 96.1%.
2. 82.3% of 17 failed implants were found during healing phase, and 94.1% of failed fixtures were removed within 5 months after implantation.
3. Crestal bone around the implants was resorbed to 1mm in 89.0%, to 1-2 mm loss of the marginal bone in 8.3%, and the bone loss over 2 mm was occurred in 2.7%.
4. Microscopic examination of the retrieved implants disclosed Grade 0 cytotoxicity in 4 and Grade 1 cytotoxicity in 2 of 6 groups divided according to lot numbers. Inhibition rate with optical density was acceptable as low as ISO standard.

Influence of Abutment Connections and Plaque Control on the Initial Healing of Prematurely Exposed Implants: An Experimental Study in Dogs

Seung-Mi Jeong, Byung-Ho Choi, Jingxu Li, Han-Sung Kim, Chang-Yong Ko, Seoung-Ho Lee
J Periodontol 2008;79:1070-4

Background:
Spontaneous early implant exposure is believed to be harmful, resulting in early crestal bone loss around submerged implants. The purpose of this study was to examine the influence of abutment connections and plaque control on the initial healing of prematurely exposed implants in the canine mandible.

Material & Methods:
Bilateral, edentulated, flat alveolar ridges were created in the mandible of 10 mongrel dogs. After 3 months of healing, two implants were placed on each side of the mandible following a commonly used two-stage surgical protocol. Implants on each side were randomly assigned to one of two procedures: 1) connection of a cover screw to the implant and removal of the gingiva to expose the cover screw; and 2) connection of a healing abutment to the implant so that the coronal portion of the abutment remained exposed to the oral cavity. In five dogs (plaque control group), meticulous plaque control was performed. In the other five dogs (no plaque control group), plaque was allowed to accumulate. At 8 weeks post-implantation, microcomputed tomography was performed at the implantation site to measure bone height in the peri-implant bone.

Results:
The plaque control group had greater vertical alveolar ridge height (9.7 ± 0.5 mm) than the group without plaque control (7.4 ± 0.7 mm; p < .05). In the plaque control group, the average bone height was greater with the abutment-connected implant (10.1 ± 0.5 mm) than with the partially exposed implant (9.3 ± 0.5 mm; p < .05). In the group without plaque control, the average bone height was greater with the partially exposed implant (8.2 ± 0.6 mm) than with the abutment-connected implant (8.5 ± 0.7 mm; p < .05).

Conclusion:
These results suggest that the placement of healing abutments and meticulous plaque control may limit bone loss around submerged implants when implants are partially exposed.
Objective:
The aim of this study was to compare the peri-implant bone reactions of implants subjected to immediate loading with those subjected to delayed loading.

Study design:
In 6 mongrel dogs, bilateral edentulated alveolar ridges were created in the mandible. After 3 months of healing, 1 implant was placed in each side. On one side of the mandible, the implant was loaded immediately with a force of 20 N that was applied at a 120° angle from the tooth’s longitudinal axis at the labial surface of the crown for 1,800 cycles per day for 10 weeks. On the opposite side, after a delay of 3 months to allow osseointegration to take place, the implant was loaded with the same force used for the immediately loaded implant. Ten weeks after loading, microcomputed tomography at the implantation site was performed. Osseointegration was calculated as the percentage of implant surface in contact with bone. Bone height was measured in the peri-implant bone.

Results:
The mean osseointegration was greater (65.5%) for the delayed-loading implants than for the immediately loaded implants (60.9%; p < .05). The mean peri-implant bone height was greater (10.6 mm) for the delayed-loading implants than for the immediately loaded implants (9.6 mm; p < .05).

Conclusion:
The results indicate that when implants are immediately loaded, the immediate loading may decrease both osseointegration of dental implants and bone height.

Table 1. Parameters (mean values and standard deviations) of bone-to-implant contact and bone height around dental implants with either immediate or delayed loading

<table>
<thead>
<tr>
<th></th>
<th>Immediate</th>
<th>Delayed</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone-implant contact (%)</td>
<td>60.9 ± 8.2</td>
<td>65.5 ± 8.8</td>
<td>< .05</td>
</tr>
<tr>
<td>Bone height (mm)</td>
<td>9.6 ± 0.5</td>
<td>10.6 ± 0.4</td>
<td>< .05</td>
</tr>
</tbody>
</table>

Objective:
The purpose of this study was to examine the effect of flapless implant surgery on crestal bone loss and osseointegration in a canine mandible model.

Study design:
In 6 mongrel dogs, bilateral, edentulated, flat alveolar ridges were created in the mandible. After 3 months of healing, 2 implants in each side were placed by either flap or flapless procedures. After a healing period of 8 weeks, microcomputed tomography at the implantation site was performed. Osseointegration was calculated as percentage of implant surface in contact with bone. Additionally, bone height was measured in the peri-implant bone.

Results:
The mean osseointegration was greater (70.4%) than at sites with flaps (59.5%) (p < .05). The mean peri-implant bone height was greater at flapless sites (10.1 mm) than at sites with flaps (9.0 mm) (p < .05).

Conclusion:
Flapless surgery can achieve results superior to surgery with reflected flaps. The specific improvements of this technique include enhanced osseointegration of dental implants and increased bone height.

Table 1. Parameters of bone-to-implant contact and bone height around dental implants when placed either without or with a flap

<table>
<thead>
<tr>
<th></th>
<th>Flapless group</th>
<th>Flap group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone-implant contact (%)</td>
<td>70.4 ± 6.3</td>
<td>59.5 ± 6.3</td>
</tr>
<tr>
<td>Bone height (mm)</td>
<td>10.1 ± 0.5</td>
<td>9.0 ± 0.7</td>
</tr>
</tbody>
</table>
The Effect of Internal Implant-Abutment Connection and Diameter on Screw Loosening

Chun-Yeon Ha, Chang-Whe Kim, Young-Jun Lim, Kyung-Soo Jang
J Kor Acad Prosthodont 2005;43(3):379-92

Statement of problem:
One of the common problems of dental implant prosthesis is the loosening of the screw that connects each component, and this problem is more common in single implant-supported prostheses with external connection and in molars.

Purpose:
The purposes of this study were:
1. To compare the initial abutment screw torque values of the six different implant-abutment interface designs.
2. To compare the detorque values of the six different implant-abutment interface designs after cyclic loading.
3. To compare the detorque values of regular and wide diameter implants and 4) to compare the initial detorque values with the detorque values after cyclic loading.

Material & Methods:
Six different implant-abutment connection systems were used. The cement retained abutment and titanium screws of each system were assembled and tightened to 32 Ncm with digital torque gauge. After 10 minutes, initial detorque values were measured. The custom titanium crowns were cemented temporarily and a cyclic sine curve load (20 to 320 N, 14 Hz) was applied. The detorque values were measured after applying a cyclic loading one million times by loading machine. One-way ANOVA test, scheffe’s test and Mann-Whitney U test were used.

Results & Conclusions:
The results were as follows:
1. The initial detorque values of six different implant-abutment connections were not significantly different (p > .05).
2. The detorque values after one million dynamic cyclic loading were significantly different (p < .05).
3. The S2 II regular and wide implant both recorded the higher detorque values than other groups after cyclic loading.
4. Of the wide initial detorque values of Avana Self Tapping Implant, MIS and Tapered Screw and the detorque values of MIS implant after cyclic loading were higher than their regular counterparts (p < .05).
5. After cyclic loading, S2 II regular and wide implants showed higher detorque values than before (p < .05).

Table 1. List of Components

<table>
<thead>
<tr>
<th>Group</th>
<th>Brand name</th>
<th>Types of cemented abutments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext/S</td>
<td>OSSTEM I US Selftapping Implant</td>
<td>hexed, collar 1.0mm, height 5.5mm</td>
</tr>
<tr>
<td>Ext/OA</td>
<td>OSSTEM II Implant</td>
<td>hexed, collar 1.0mm, height 5.5mm</td>
</tr>
<tr>
<td>Ext/HAO</td>
<td>OSSTEM II Implant</td>
<td>hexed, collar 1.0mm, height 5.5mm</td>
</tr>
<tr>
<td>Int/HAO</td>
<td>Osstem II Implant</td>
<td>hexed, collar 1.0mm, height 5.5mm</td>
</tr>
<tr>
<td>Int/HAO</td>
<td>Mis</td>
<td>hexed, collar 2.0mm</td>
</tr>
<tr>
<td>Int/HAO</td>
<td>Tapered Screw Vert</td>
<td>hexed, 5.5mm wide profile</td>
</tr>
<tr>
<td>Ext</td>
<td>external, Int</td>
<td>internal</td>
</tr>
</tbody>
</table>

Fig. 1. Regular diameter implants, abutments, abutment screws and titanium crowns.

Fig. 2. Wide diameter implants, abutments, abutment screws and titanium crowns.

SS System Pre-Clinical Study

Clinical Study

SS System Reference
Pre-Clinical Study

Biology

Pre-Clinical Study

Biomechanics

7. Chun-Yeo Ha, Chang-Wie Kim, Young-Jun Lim, Myung-Joo Kim, Ho-Bum Kwon. The Influence of Abutment Angulation on Screw Lossening of Implant in the Anterior Maxilla. Scientific Poster, J Kor Acad Prosthodont 2008 Conference.

The Study of Bone Density Assessment on Dental Implant Sites

Su-Won Park, Soo-Mi Jiang, Byoung-Hwan Choi, Han-Na Son, Bong-chan Park, Chang-Hwan Kim, Jang-Ho Son, Lei-Yong Sung, Ji-Ho Lee, Yeong-Hoel Cho

Objectives:
Bone density is one of the important factors for the long term success of endosseous implants. The bone density varies from site to site and from patient to patient. A preoperative evaluation of the bone density is quite useful to oral surgeons for planning dental implantation. More accurate information on the bone density will help surgeons identify suitable implant sites, thereby increase the success rate of dental implantation.

This study examined the correlation between the bone density measured preoperatively by computed tomography (CT) and the implant primary stability measured by resonance frequency analysis. Furthermore, the effects of the implant sites, gender, age and general systemic disorder patients on the bone density and primary implant stability were examined.

Study design:
One hundred and fourteen patients were selected. None of the patients had undergone a tooth extraction or bone grafting procedure in the previous year. The patients underwent CT scanning to evaluate the Hounsfield unit (HU), and resonance frequency analysis (RFA) was used to evaluate the implant primary stability at the time of implant installation. All implants were 4.0 mm diameter and 11.5 mm length US II. All patients were recorded and the HU and implant stability quotient (ISQ) value were evaluated according to the sites, gender and age.

Conclusions:
Based on these results, the short term clinical success rate of RNB surface treated external connection domestic implants showed satisfactory results and the marginal bone loss was in accord with the success criteria of dental implants.

table 1. Results of ANOVA for Hounsfield unit (HU) and implant

<table>
<thead>
<tr>
<th>Zone</th>
<th>HU</th>
<th>ISQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>14</td>
<td>723.6±154.4</td>
</tr>
<tr>
<td>Zone 2</td>
<td>14</td>
<td>856.7±173.8</td>
</tr>
<tr>
<td>Zone 3</td>
<td>23</td>
<td>621.5±164.9</td>
</tr>
<tr>
<td>Zone 4</td>
<td>8</td>
<td>827.6±193.4</td>
</tr>
<tr>
<td>Zone 5</td>
<td>12</td>
<td>753.8±171.2</td>
</tr>
<tr>
<td>Zone 6</td>
<td>43</td>
<td>797.7±139.1</td>
</tr>
</tbody>
</table>

p value*: 0.011

*No: number of patients; Zone 1: maxillary anterior; Zone 2: maxillary premolar; Zone 3: maxillary molar; Zone 4: mandibular anterior; Zone 5: mandibular premolar; Zone 6: mandibular molar; *: p value was taken by ANOVA

Table 2. Partial correlation coefficients between the variables

<table>
<thead>
<tr>
<th>No</th>
<th>HU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISQ</td>
<td>0.497*</td>
</tr>
<tr>
<td>Age</td>
<td>-0.104 -0.125</td>
</tr>
</tbody>
</table>

*HU: Hounsfield unit, ISQ: implant stability quotient, *: p<0.01, adjusted by sex and systemic diseases
A Retrospective Evaluation of Implant Installation with Maxillary Sinus Augmentation by Lateral Window Technique

Se-Il Ki, Min-Gi Yu, Young-Joon Kim, Min-Suk Kook, Hong-Ju Park, Uttom Kumar Shet, Hee-Kyun Oh

Purpose:
The aim of this study was to evaluate the clinical results of implants which were installed with maxillary sinus elevation by using lateral window technique.

Materials and Methods:
We performed the maxillary sinus elevation by lateral window technique to 87 patients who visited Dept. of Oral & Maxillofacial Surgery, Chonnam National University Hospital from January, 2003 to January, 2007. When the residual bone height was from 3 mm to 7 mm, the sinus elevation and simultaneous implant installation was mostly performed. When the residual bone height was less than 3 mm, the sinus elevation was performed and the delayed implant installation was done after 5 or 6 months. No artificial membranes were used for coverage of the lateral bony window site and freeze dried fibrin sealant was applied to the grafted bone. The mean follow-up period was 28.5 months (ranged from 10 months to 48 months).

Results:
1. Unilateral sinus elevations were performed in 51 patients and bilateral sinus elevations were performed in 36 patients. And the total number of sinus elevation procedure was 123 cases.
2. The sinus elevation and simultaneous implant installation was performed in 89 sinuses and 249 implants were installed. The sinus elevation and delayed implant installation was performed in 44 sinuses and 141 implants were installed. The total number of implants were 390 in 133 sinuses. The average healing period after sinus elevations was 6.1 months in delayed implant installation.
3. Only autogenous bone, autogenous bone mixing with allografts or autogenous bone mixing with xenografts were used as graft materials.
4. The average period from first surgery to second surgery was about 7.2 months.
5. Some patients complications, such as perforation of sinus membrane, swelling, infection and exposure of cover screw. Two implants were removed in the infected sinus.
6. The survival rate of implants with maxillary sinus elevation by lateral window technique was 99.5% and the success rate of implants was 95.1%.

Conclusions:
These results indicated that the implants which were installed with maxillary sinus elevation by lateral window technique showed high survival and success rates.

Table 1. Survival rates of simultaneously installed implants

<table>
<thead>
<tr>
<th>Residual bone height (mm)</th>
<th>No. of implant</th>
<th>No. of failed implant</th>
<th>Survival rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 7</td>
<td>106</td>
<td>2</td>
<td>98.1</td>
</tr>
<tr>
<td>7 -3</td>
<td>132</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>< 3</td>
<td>11</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>249</td>
<td>2</td>
<td>99.2</td>
</tr>
</tbody>
</table>

Table 2. Survival rates of delayed installed implants

<table>
<thead>
<tr>
<th>Residual bone height (mm)</th>
<th>No. of implant</th>
<th>No. of failed implant</th>
<th>Survival rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 7</td>
<td>9</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>7 -3</td>
<td>48</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>< 3</td>
<td>84</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>141</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Multicenter Retrospective Clinical Study of Osstem US II Implant System in Type IV Bone

Su-Gwan Kim, Chul Min Park, Young-Kyun Kim, Hee-Kyun Oh, Gab-Lim Cho, Young Hak Oh
J Korean Implantology(KAOMI) 2007;11(3):22-29

The purpose of this study is to evaluate the success rate of the Osstem US II(Seoul, Korea) placed in the edentulous area of type 4 bone quality.

176 US II implants that had been inserted between 1987 and 2005 were followed up for mean 29.4 months. With medical records and radiographs we analysis the distribution of patients’ age and gender, position of implant, the kind of surgical technique, the type of prostheses, amount of bone resorption survival rate and success rate of implants. From these analysis we got the following results.

In the distribution of implants by site, 167 implants were placed on maxilla and only 11 implants on mandible. And the resorption ofcrestal bone more than 1mm was measured at only 5 implants. The mean plaque, gingival inflammatory and calculus index were measured 0.56, 0.21, 0.01. The survival rate was 100% and success rate was 98.8% during 29.4 months of mean following up period.

As a result, we got the excellent clinical results of US II implant system at bone quality of type 4.

Table 1. Distribution of operation methods

<table>
<thead>
<tr>
<th>Operation method</th>
<th>No. of implants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>54</td>
</tr>
<tr>
<td>SL via lateral window</td>
<td>114</td>
</tr>
<tr>
<td>SL via osteotome technique</td>
<td>9</td>
</tr>
<tr>
<td>GBR</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Distribution of implants by type of prostheses

<table>
<thead>
<tr>
<th>Prosthesis</th>
<th>No. of implants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>3</td>
</tr>
<tr>
<td>Fixed partial</td>
<td>136</td>
</tr>
<tr>
<td>Fixed complete</td>
<td>33</td>
</tr>
<tr>
<td>Others</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3. Distribution of implants by bone resorption

<table>
<thead>
<tr>
<th>Amount of bone resorption (mm)</th>
<th>No. of implants</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>105</td>
</tr>
<tr>
<td>0-0.9</td>
<td>2</td>
</tr>
<tr>
<td>1.0-2.0</td>
<td>5</td>
</tr>
<tr>
<td>>2.0</td>
<td>0</td>
</tr>
</tbody>
</table>
In this study, we analyzed data for edentulous patients from multiple centers after installation of the Osstem US II system in a retrospective study of patient gender, age, implant area, additional surgery, type of prosthesis, and the implant survival and success rates. We then analyzed the success rate after prosthetic restoration using implants in completely edentulous patients to validate the usefulness of the US II system.

Between 1997 and 2005, of the patients who visited regional dental clinics and private clinics nationwide (Department of Oral and Maxillofacial Surgery, Chosun University Dental College; Department of Oral and Maxillofacial Surgery and dental clinics, Seoul National University Bundang Hospital; Department of Oral and Maxillofacial Surgery, Chonnam University Dental School; dental clinics, Daedong Hospital; All Dental Private Office) and underwent the Osstem US II system implant procedure, our multicenter retrospective study examined 44 completely edentulous patients (mean age 63.3 years) who received 276 implants. The following results were obtained.

1. Eight of the 44 patients had systemic diseases, including 3 patients with diabetes, 2 patients with cardiovascular disease, and 1 patient each with cerebral infarction, hypertension, bronchial asthma, and Parkinson’s disease.

2. The oral hygiene of the 44 patients was classified as good in 36 patients, somewhat poor in 7 patients, moderately poor in 1 patient, and very poor in 0 patients.

3. Of the implants installed, 80 were 20 mm long, 65 were 11.5 mm long, 64 were 13 mm long, and 37 were 15 mm long; 175, 52, and 23 implants had diameters of 4.0, 3.75, and 3.3 mm, respectively.

4. When opposing teeth were encountered, 60 were natural teeth, 13 were porcelain, 40 had gold crowns, 7 were resin teeth, 90 were total dentures, and 66 were implant-repaired opposing teeth.

5. After implant installation, no bone resorption of the alveolar crest occurred in 181 cases, and more than 1 mm of bone loss took place in 44 cases.

6. The mean calculus index for the soft tissues near the implants in 215 cases was 0.11, and the gum inflammation index assessed in 226 cases averaged 0.34. The plaque index measured in 225 cases averaged 0.55, and the width of the attached gingiva measured in 222 cases averaged 2.05 mm.

7. For implant surgery, no additional surgery was performed in 161 cases (58.3%); maxillary sinus elevation via a lateral window was performed in 45 cases (16.3%); guided bone regeneration (GBR) was performed in 42 cases (15.2%); simultaneous maxillary sinus elevation and GBR were performed in 6 cases (2.1%); and veneer grafting was performed in 10 cases (3.6%).

8. According to the implant method, two implants installed with sinus lifting via a lateral window failed, for a survival rate of 95.55% (43/45). Temporary complications developed with the other procedures, but were resolved in all cases, giving good results.

9. Of the 276 implants installed, two failed and were removed for a final survival rate of 99.27%.

Purpose:
To evaluate long-term follow-up clinical performance of dental implants in use in South Korean populations.

Materials and Methods:
A retrospective multicenter cohort study design was used to collect long-term follow-up clinical data from dental records of 224 patients treated with 767 2-stage endosseous implants at Ajou University Medical Center and Bundang Jesaeng Hospital in South Korea from June 1996 through December 2003. Exposure variables such as gender, systemic disease, location, implant length, implant diameter, prosthesis type, opposing occlusion type, and date of implant placement were collected. Outcome variables such as date of implant failure were measured.

Results:
Patient ages ranged from 17 to 71.7 years old (mean age, 45.6 years old). Implants were more frequently placed in men than in women (61% versus 39%, or 471 men versus 296 women). Systemic disease was described by 9% of the patients. All implants had hydroxyapatite-blasted surfaces. Most of the implants were 3.75 mm in diameter. Implant lengths 10 mm, 11.5 mm, 13 mm, and 15 mm were used most often. Differences of implant survival among different implant locations were observed. Implants were used to support fixed partial dentures for the majority of the restorations. The opposing dentition was natural teeth for about 50% of the implants. A survival rate of 97.9% (751 of 767) was observed after 4.5 years (mean, 1.95 ± 1.2 years).

Conclusions:
Clinical performance of 2-stage dental implants demonstrated a high level of predictability. The results achieved with a South Korean population did not differ from results achieved with diverse ethnic groups (Cohort Study).

<table>
<thead>
<tr>
<th>Year</th>
<th>Implants at start of interval</th>
<th>Implants lost to follow-up</th>
<th>Failure</th>
<th>% of total failure</th>
<th>Cumulative failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>767</td>
<td>754</td>
<td>13</td>
<td>81.3</td>
<td>98.3</td>
</tr>
<tr>
<td>2</td>
<td>754</td>
<td>752</td>
<td>2</td>
<td>12.5</td>
<td>98.0</td>
</tr>
<tr>
<td>3</td>
<td>752</td>
<td>751</td>
<td>1</td>
<td>6.2</td>
<td>97.9</td>
</tr>
<tr>
<td>4</td>
<td>751</td>
<td>751</td>
<td>0</td>
<td>0</td>
<td>97.9</td>
</tr>
<tr>
<td>4.5</td>
<td>751</td>
<td>751</td>
<td>0</td>
<td>0</td>
<td>97.9</td>
</tr>
</tbody>
</table>

Table 1. Distribution of implants by bone resorption

<table>
<thead>
<tr>
<th>Amount of bone resorption (mm)</th>
<th>No. of implants</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>181</td>
</tr>
<tr>
<td>0~0.9</td>
<td>6</td>
</tr>
<tr>
<td>1.0~2.0</td>
<td>35</td>
</tr>
<tr>
<td>>2.0</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 2. Survival rate on total implant

<table>
<thead>
<tr>
<th>Implant status</th>
<th>No. of implants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival count</td>
<td>274</td>
</tr>
<tr>
<td>Fail count</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>276</td>
</tr>
</tbody>
</table>

Survival percentage: 99.27%
Effects of Different Depths of Gap on Healing of Surgically Created Coronal Defects around Implants in Dogs: A Pilot Study

Hong-Cheol Yoon, Jung-Yoo Choi, Ui-Won Jung, Eun-Kyung Bae, Seong-Ho Choi, Ho-Yong Lee, Chong-Kwan Kim, June-Sung Shim
J Periodontol 2008;79: 355-61

Background:
This study investigated the bone growth pattern in surgically created coronal defects with various depths around implants in dogs.

Materials and Methods:
Four mongrel dogs were used. All mandibular premolars were extracted under general anesthesia and left to heal for 2 months. After osteotomy, bony defects were prepared in test sites, using a stepped drill with a diameter of 6.3 mm and two depths: 2.5 mm (test sites 1 [T1]) and 5.0 mm (test sites 2 [T2]). In the control sites, the implants were placed after osteotomy without any coronal defects. T1, T2, and control sites were prepared in the right and left sides of the mandible. Six implants, 3.3 mm in diameter and 10 mm in length, were placed in each dog; the implants were submerged completely. Two dogs were sacrificed 8 weeks after surgery, and the other two dogs were sacrificed 12 weeks after surgery. The stability of all implants was measured with a resonance frequency analyzer after placement and after sacrifice. All sites were block-dissected for ground sectioning and histologic examination.

Results:
After 12 weeks of healing, only T2 were not filled fully with bone. At week 8, the mean bone-to-implant contact (BIC) was 47.7% ± 14.7 for T1, and 22.2% ± 14.7 for T2. At week 12, the BIC was 56.7% ± 22.2 for T1, and 35.1% ± 8.0 for T2. The insertion stability was reduced at sites with a greater defect depth. Similar stability was noted in all specimens after 8 and 12 weeks of healing.

Conclusions:
Bone healing between an implant and marginal bone was compromised at sites with a deeper defect when the width of the bone defect was 1.5 mm.

The Effect of Surface Treatment of the Cervical Area of Implant on Bone Regeneration in Mini-pig

Jin-Yong Cho, Young-Jun Kim, Min-Gi Yu, Min-Suk Kook, Hee-Kyun Oh, Hong-Ju Park

Objective:
The present study was performed to evaluate the effect of surface treatment of the cervical area of implant on bone regeneration in fresh extraction socket following implant installation.

Materials and Methods:
The four mini pigs, 18 months old and 30 kg weighted, were used. Four premolars of the left side of both the mandible and maxilla were extracted. ∅ 3.3 mm and 11.5 mm long US II plus implants (Osstem Implant, Korea) with resorbable blasting media (RBM) treated surface and US II implants (Osstem Implant, Korea) with machined surface at the top and RBM surface at lower portion were installed in the socket. Stability of the implant was measured by Osstell™ (Model 6 Resonance Frequency Analyser: Integration Diagnostics Ltd., Sweden). After 2 months of healing, the P-B distance were repeated in the right side by same method of left side. At four months after first experiment, the animals were sacrificed after measurement of stability of all implants, and biopsies were obtained.

Results:
Well healed soft tissue and no mobility of the implants were observed in both groups. Histologically satisfactory osseointegration of implants was observed with RBM surface, and no foreign body reaction as well as inflammatory infiltration around implant were found. Furthermore, substantial bone formation and high degree of osseointegration were exhibited at the marginal defects around the cervical area of US II plus implants. However, healing of US II implants was characterized by the incomplete bone substitution and the presence of the connective tissue zone between the implant and newly formed bone. The distance between the implant platform (P) and the most coronal level of bone-to-implant contact (B) after 2 months of healing was 2.66 ± 0.11 mm at US II implants group and 1.80 ± 0.13 mm at US II plus implant group. The P-B distance after 4 months of healing was 2.29 ± 0.13 mm at US II implants group and 1.25 ± 0.10 mm at US II plus implants group. The difference between both groups regarding the length of P-B distance was statistically significant (p < .05). Concerning the resonance frequency analysis (RFA) value, the stability of US II plus implants group showed relatively higher RFA value than US II implants group.

Conclusions:
The current results suggest that implants with rough surface at the cervical area have an advantage in process of bone regeneration on defect around implant placed in a fresh extraction socket.
Heat Transfer to the Implant-Bone Interface during preparation of Zirconia/Alumina Complex Abutment

Purpose:
Excessive heat at the implant-bone interface may compromise osseointegration. This study examined heat generated at the implant surface during preparation of zirconia/alumina complex abutment in vitro.

Material & Methods:
Sixty zirconia/alumina complex abutments (ZioCera, Ostem, Seoul, Korea) were randomized to twelve experiment groups. The abutments were connected to implants (US II, Ostem, Seoul, Korea) and were embedded in an acrylic-resin block in a 37°C water bath. Abutments were reduced horizontally 1 mm height over a period of 1 min with high-speed handpiece and polished for 30 s with low-speed handpiece “with air/water coolant” and “without coolant.” Temperatures were recorded via thermocouples at the cervical, middle, and apical part of the implant surface. The Mann-Whitney rank-sum test was used to assess the statistical significance of difference of temperature between with coolant and without coolant.

Results:
1 mm reduction with high-speed handpiece without coolant resulted in maximum temperature of 41.22°C at the cervical of implant. 3 of 4 temperatures more than 40°C were observed at the cervical part of implant with high-speed handpiece without coolant. Temperature difference between “with coolant” and “without coolant” during both low-speed polishing and high-speed reduction was statistically significant at the apical part of implant (p < .05). In contrast, temperature difference between “with coolant” and “without coolant” during both low-speed polishing and high-speed reduction was not statistically significant at the middle and apical part of implant (p > .05).

Conclusions:
Preparation of zirconia/alumina complex abutment caused an increase in temperature within the implant but this temperature increase did not reach critical levels described in implant literature.

Table 1. Temperatures at each location of implant during preparation of five abutments using each handpiece type accompanied with coolant and without coolant

<table>
<thead>
<tr>
<th>Abutment</th>
<th>Coolant Location</th>
<th>Mean temperature (±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZioCera</td>
<td>Cervical</td>
<td>38.05 ± 0.55</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>38.05 ± 0.55</td>
</tr>
<tr>
<td></td>
<td>Apical</td>
<td>38.05 ± 0.55</td>
</tr>
<tr>
<td>US II</td>
<td>Cervical</td>
<td>38.05 ± 0.55</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>38.05 ± 0.55</td>
</tr>
<tr>
<td></td>
<td>Apical</td>
<td>38.05 ± 0.55</td>
</tr>
</tbody>
</table>

Fatigue Fracture of Different Dental Implant System Under Cyclic Loading

Purpose:
Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed.

Materials and Methods:
Total 28 of external hexagonal implants were divided into 7 of 4 groups: Group A, FULL OSEOTITE Implant, Group B (NeoBioCare, Brah nemark System M k III Groovy RPI, Group C (NeoBioLabe, SinusQuick™ EB), Group D (Ostern, USII). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fatigue, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT™. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60 - 600 N until fracture occurred. The fracture pattern of abutment screw and fixture was examined using a scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis.

Results:
1. In Vicker’s hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D.

Table 2. Mean temperature and statistical significance of temperature difference for Zirconia/Alumina Complex abutment with high-speed contouring

<table>
<thead>
<tr>
<th>Location</th>
<th>Mean temperature (±SD)</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical</td>
<td>37.24 ± 0.45</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>Middle</td>
<td>37.24 ± 0.45</td>
<td>0.954</td>
</tr>
<tr>
<td>Apical</td>
<td>37.24 ± 0.45</td>
<td>0.954</td>
</tr>
</tbody>
</table>

Conclusions:
Preparation of zirconia/alumina complex abutment caused an increase in temperature within the implant but this temperature increase did not reach critical levels described in implant literature.

38. Soo-Min Ko. The Accuracy of Impression Technique using the New Impression Coping. Scientific Oral, 12th International College of Prosthodontists Meeting.
41. Soo-Min Ko. The Accuracy of Impression Technique using the New Impression Coping. Scientific Oral, 12th International College of Prosthodontists Meeting.
44. Byung-Gi Cho, Jae-Jin Ryu. Study of Possibility Direct Casting on Titanium Abutment. Scientific Poster, Kor Dent Technician Associate 2005 Conference.
45. Soo-Min Ko. The Accuracy of Impression Technique using the New Impression Coping. Scientific Oral, 12th International College of Prosthodontists Meeting.
47. Soo-Min Ko. The Accuracy of Impression Technique using the New Impression Coping. Scientific Oral, 12th International College of Prosthodontists Meeting.
49. Soo-Min Ko. The Accuracy of Impression Technique using the New Impression Coping. Scientific Oral, 12th International College of Prosthodontists Meeting.
Objectives:
Mini-implant system is applicable to areas of narrow space and area requiring temporary loading support. The purpose of this study was to evaluate the clinical outcome of a mini-implant system as well as the application of mini-implant system in the dental clinical field.

Study design:
The patients who had been operated from Jan 2007 to Dec 2007 in the four dental facility including Seoul National University Bundang Hospital were enrolled. To evaluate the factors associated with the clinical outcome, the patients were classified according to gender, age, area of surgery, type of implant, diameter and length of the implant, and the purpose of the mini-implant system application.

Results:
From 147 implants, only three implants failed, one of them was for temporary loading. There were no serious surgical or prosthetic complications in this study.

Conclusions:
An analysis of the preliminary data revealed a satisfactory clinical outcome. However, more long-term evaluation of narrow ridge type as well as the patient’s satisfaction on the use of a provisional type mini-implant system is needed.

Table 1. Patients’ characteristics (n=69)

<table>
<thead>
<tr>
<th>Variables</th>
<th>The number of cases (implants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>39 (73)</td>
</tr>
<tr>
<td>Female</td>
<td>30 (74)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>0-19</td>
<td>7 (11)</td>
</tr>
<tr>
<td>20-29</td>
<td>4 (6)</td>
</tr>
<tr>
<td>30-39</td>
<td>7 (11)</td>
</tr>
<tr>
<td>40-49</td>
<td>9 (13)</td>
</tr>
<tr>
<td>50-59</td>
<td>23 (33)</td>
</tr>
<tr>
<td>60-69</td>
<td>18 (26)</td>
</tr>
<tr>
<td>70-79</td>
<td>7 (10)</td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
</tr>
<tr>
<td>Healthy</td>
<td>48 (98)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>10 (19)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>8 (13)</td>
</tr>
<tr>
<td>Coronovascular attack history</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Asthma 2 (3)</td>
<td></td>
</tr>
<tr>
<td>Alcoholism 2 (3)</td>
<td></td>
</tr>
<tr>
<td>Thyroid disease</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>58 (128)</td>
</tr>
<tr>
<td>No</td>
<td>13 (26)</td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>Success</td>
<td>66 (146)</td>
</tr>
<tr>
<td>Failure</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Complications</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>66 (146)</td>
</tr>
<tr>
<td>Osseointegration failure</td>
<td>3 (5)</td>
</tr>
<tr>
<td>Infection</td>
<td>3 (6)</td>
</tr>
</tbody>
</table>

Objectives:
The purpose of this study was to investigate the clinical effective of immediate restoration with Osstem MS mini-implant in the edentulous space of 5-6 mm.

Study design:
The sample consisted of 36 consecutively treated partially edentulous patients who had a total of 36 Osstem MS mini-implants, which were 2.5 mm or 3.0 mm in diameter and placed in 5-6 mm gap. The chair-side-made or laboratory-made provisional crowns for implants were fabricated at the time of fixtures placed. The final restorations were fabricated with gold alloy-fusedporcelain crown 3 to 5 months later. During the mean 21.3 months (12-37 months) follow-up time since fixtures placement, all implants were examined clinically and radiologically.

Conclusions:
Immediate loaded implant with Osstem MS mini-implant has good clinical prosthetic effects in the edentulous space of 5-6 mm.
Clinical Study

The “OSSTEM IMPLANT Research Project” for the promotion of implantology may support clinical and laboratory research at the discretion of its research committee.

Further information concerning conditions can be obtained from the following address:

Clinical Oriented Research Team for Implantology
Implant R&D Center of OSSTEM IMPLANT Co., Ltd.
#38-44, Geoje 3-dong, Yeonje-gu, Busan, Korea. Zip. 611-801
Tel. 82-70-7016-4745
Fax. 82-70-4394-0404
project@osstem.com
http://www.osstem.com